SEEDLING DYNAMICS OVER THIRTY-TWO YEARS IN A TROPICAL RAIN FOREST TREE

Ecology ◽  
2000 ◽  
Vol 81 (2) ◽  
pp. 568-584 ◽  
Author(s):  
Joseph H. Connell ◽  
Peter T. Green
Ecology ◽  
1995 ◽  
Vol 77 (2) ◽  
pp. 568-580 ◽  
Author(s):  
David W. Lee ◽  
Krishnapillay Baskaran ◽  
Marzalina Mansor ◽  
Haris Mohamad ◽  
Son Kheong Yap

2003 ◽  
Vol 162 (6) ◽  
pp. 691-703 ◽  
Author(s):  
Christopher W. Dick ◽  
Kobinah Abdul‐Salim ◽  
Eldredge Bermingham

Oecologia ◽  
1992 ◽  
Vol 91 (2) ◽  
pp. 239-244 ◽  
Author(s):  
Hyesoon Kang ◽  
Graciela Jaschek ◽  
Kamaljit S. Bawa

1991 ◽  
Vol 7 (1) ◽  
pp. 85-97 ◽  
Author(s):  
J. Popma ◽  
F. Bongers

ABSTRACTA comparison is made of the light acclimation potential of seedlings of three canopy species of the tropical rain forest of Los Tuxtlas, Mexico: Cordia megalantha, Lonchocarpus guatemalensis, and Omphalea oleifera. These species showed similar growth rates in a range of microhabitats. Gap dynamics were simulated by transferring plants between three environments: beneath a closed canopy, a small gap, and a large gap. Plants of all three species were able to adjust their morphology and growth rates in response to changes in light availability. Growth rates increased when plants were moved to a (larger) gap, and decreased when plants were moved to a more shaded environment. Shade-grown plants were able to acclimate faster to increasing light availability than sun-grown plants to decreasing light availability. Also, plants moved from shady to sunny conditions showed higher relative growth rates than sun control plants, whereas sun-grown plants when moved to the shade showed lower relative growth rates than shade control plants. Species differed in their response to gap dynamics. Omphalea could not acclimate morphologically to shading, but reacted faster than the other species in response to the occurrence of a large gap. Acclimation potential seemed to be related to plasticity in physiological rather than in morphological traits. Suppressed seedlings of all three species performed well in the shade, and were able to acclimate rapidly to gap-conditions.


2007 ◽  
Vol 95 (2) ◽  
pp. 332-342 ◽  
Author(s):  
TOSHIHIRO YAMADA ◽  
PIETER A. ZUIDEMA ◽  
AKIRA ITOH ◽  
TAKUO YAMAKURA ◽  
TATSUHIRO OHKUBO ◽  
...  

2001 ◽  
Vol 17 (2) ◽  
pp. 177-189 ◽  
Author(s):  
TAD C. THEIMER

The role of white-tailed rats (Uromys caudimaculatus) as dispersers of seeds of the Australian tropical rain forest tree Beilschmiedia bancroftii, (Lauraceae) was investigated by following the fates of seeds and seedlings over 2 y. Fruits of this tree are too large to be consumed by any avian frugivore except the southern cassowary (Casuarius casuarius), and the only other native mammal capable of dispersing the seeds is the musky rat kangaroo (Hypsiprimnodon moschatus). However, neither of these species has been documented to disperse the seeds of this tree. During a mast year, white-tailed rats cached seeds an average of 13 m from parent trees in a variety of microsites. Although none of the 61 cached seeds followed in this study survived to germination, comparison of seed, cache and seedling distributions suggested that most seedlings arose from rat-cached seeds. White-tailed rats cached seeds in both mast and non-mast years, but the time seeds remained on the forest floor and in caches was significantly shorter in non-mast years, suggesting that synchronous seed production increases the probability that some caches survive to germination. Because white-tailed rats are the most common and widespread native mammal capable of dispersing large-seeds, this study suggests that they may play an important role in the seed and seedling dynamics of large-seeded tree species in Australian tropical rain forests.


Sign in / Sign up

Export Citation Format

Share Document